
Algebraic Implementation of Model Checking Algorithms

Teodor Rus, Eric Van Wyk

Department of Computer Science

The University of Iowa

Iowa City, IA 52242 USA

rus,vanwyk@cs.uiowa.edu

We describe an algebraic methodology for implementing model checking algo-

rithms. In this methodology temporal logic formulas are seen as phrases of a

source language Ls and the sets of states of a as elements of an algebra of sets

called the target language, Lt. Thus, the model checker becomes an algebraic

compiler C : Ls → Lt which maps temporal logic formulas in Ls into the sets of

states of the model in Lt which satisfy these formulas. Since algebraic compilers

can be automatically generated from algebraic specifications of the source and tar-

get algebras this methodology enjoys the advantage of the automatic generation of

model checking algorithms from the algebraic specification of the temporal logics

and their associated models. Also, since algebraic compilers implement translation

via a homomorphism between the source and target algebras, which is a naturally

parallel computation, the model checkers thus implemented are naturally parallel

algorithms.

1 Introduction

An algebraic compiler C : Ls → Lt is a language-to-language translator that
uses an algorithm for homomorphism computation to embed a source language
Ls into a target language Lt. We have developed a methodology and its sup-
porting tools that allow us to automatically generate such compilers from al-
gebraic specifications of the source and target languages 1. Although algebraic
compilers are typically used for program translation, many other computations
can be easily implemented within this framework. In this paper, we describe
the application of this methodology to generate algebraic implementations of
model checking algorithms.

Model checking is a formal technique 2 used to verify the correctness of
concurrent and distributed programs according to some correctness specifica-
tion. Programs are represented as labeled finite state transition systems called
Kripke models 3 or simply models, and correctness properties are described by
formulas written in a temporal logic, which acts as a correctness specification
language. In this paper, we use CTL, Computational Tree Logic 2, a proposi-
tional, branching-time temporal logic. A model checking algorithm determines
which states in a model satisfy a given temporal logic formula. For example,
the behavior of two concurrent processes competing for access to a critical sec-
tion can be represented as a model and the mutual exclusion and absence of

1



starvation requirements can be expressed as temporal logic formulas. Given
a model describing the processes and a formula describing mutual exclusion,
the model checker can then determine which states of the model satisfy the
mutual exclusion property. If all states in the model satisfy the formula, then
the program satisfies the mutual exclusion property.

Formally, a model M is a tupleM = 〈S,E, P :T → 2S〉, where S is a finite
set of states, S = {s1, s2, . . . , sm}, and E is a binary relation on S, E ⊆ S×S,
such that ∀s ∈ S,∃t ∈ S, (s, t) ∈ E, that is, every state in the graph ofM has a
successor. For each s ∈ S we use the notation successors(s) = {s′ ∈ S|(s, s′) ∈
E}. A path is an infinite sequence of states (s0, s1, s2, . . .) such that ∀i, i ≥
0, (si, si+1) ∈ E. T is a finite set of atomic propositions, T = {p1, p2, . . . , pn},
and is a subset of AP , the set of all possible atomic propositions. P is a
proposition labeling function that maps an atomic proposition in T to the set
of states in S on which that proposition is true. Figure 1 shows a model 2

®
­

©
ªN1, N2

0

©©©©©¼

HHHHHj®
­

©
ªT1, N2

1

¡
¡ª

@
@R®

­
©
ªC1, N2

2

@
@R

¤ -

®
­

©
ªT1, T2

3

¡
¡ª®

­
©
ªC1, T2

4
©©

©©
©©

©©
©©

©©
©*
®
­

©
ªN1, T2

5

¡
¡ª

@
@R®

­
©
ªT1, T2

6

@
@R

®
­

©
ªN1, C2

7

¡
¡ª

¡¾

®
­

©
ªT1, C2

8
HH

HH
HH

HH
HH

HH
HY

Figure 1: Model Example

for two processes competing for entrance into a critical section. The atomic
propositions Ti, Ni, and Ci denote process i, 1 ≤ i ≤ 2, trying to enter the
critical section, not trying to enter the critical section, and executing in the
critical section, respectively.

The set of well-formed CTL formulas is described by the rules 2:
1. The logical constants, true and false are CTL formulas.
2. Every atomic proposition, p ∈ AP , is a CTL formula.
3. If f1 and f2 are CTL formulas, then so are ¬f1, f1 ∧ f2, AXf1, EXf1,

A[f1Uf2], and E[f1Uf2].
As in 2, we define the satisfaction relation, |=, of a formula f ∈ CTL on a state
s in the model M , denoted s |= f or M, s |= f and read “s satisfies f”, as
follows:

2



s |= p iff s ∈ P (p)
s |= ¬f iff not s |= f

s |= f1 ∧ f2 iff s |= f1 and s |= f2

s |= AX f1 iff ∀(s, t) ∈ E, t |= f1

s |= EX f1 iff ∃(s, t) ∈ E, t |= f1

s |= A[f1 U f2] iff ∀ paths (s0, s1, s2, . . .), s = s0 and
∃i[i ≥ 0 ∧ si |= f2 ∧ ∀j[0 ≤ j < i⇒ sj |= f1]]

s |= E[f1 U f2] iff ∃ a path (s0, s1, s2, . . .), s = s0 and
∃i[i ≥ 0 ∧ si |= f2 ∧ ∀j[0 ≤ j < i⇒ sj |= f1]]

The set of states {s ∈ S |M, s |= f} is called the satisfiability set of the formula
f for modelM . For the model in Figure 1, we can express the mutual exclusion
property that both processes should not be in the critical section at the same
time by the CTL formula ¬(C1∧C2). The absence of starvation property, which
states that if a process is trying to enter the critical section it will eventually
be able to do so, is described for process i by the formula ¬Ti ∨A[true U Ci].
The model checker would verify that both of these properties hold on all states
in the model; thus, the program satisfies both properties.

Clarke, Emerson, and Sistla 2 developed a model checking algorithm that,
when given a CTL formula f and a model M , labels each state of M with all
sub-formulas of f which the state satisfies. This is accomplished by converting
the CTL formula to a prefix form and then working from the end of the prefix
formula. During each step towards the front of the formula, all sub-formulas of
the sub-formula being checked have been labeled on the states on which they
are true. Thus, upon completion, the formula f holds on a particular state, s,
if the state s is labeled with the formula f .

We present in this paper a simple algorithm that implements a model
checker based on the algorithm for homomorphism computation used by an
algebraic compiler 1. To implement a model checker as an algebraic compiler
C : Ls → Lt we take the source language Ls to be the language of CTL formu-
las for a given modelM and the target language Lt to be a language describing
the subsets of the states of the model M . The algebraic compiler C translates
a CTL formula f , to the set of states, S ′, on which the formula f holds. That
is, C(f) = S′ where S′ = {s ∈ S|M, s |= f}. A significant advantage of using
this methodology is that this algorithm is automatically generated from its
specifications by our existing TICS (Technology for Implementing Computer
Software) tools4. Hence, the implementation of our algorithm does not require
any programming activity other than the algebraic specification of the CTL
language, the structuring of the model M as an algebra, and the definition
of appropriate macro operations associated with the specification rules of the
CTL language that embed CTL into the states of M . Consequently, this algo-

3



rithm does not require any preprocessing of the formula and provides a clean
simple algebraic solution to the model checking problem. Another significant
advantage of our approach is that since the homomorphism computation used
by an algebraic compiler is a parallel algorithm, the generated model checker
is also a parallel algorithm.

The paper is structured as follows: Section 2 describes the algebraic struc-
ture of the CTL logic and the model M . Section 3 describes the algebraic
algorithm implementing the model checker and gives the the algebraic specifi-
cation used to generate the model checker program. Section 4 provides some
conclusions. An Appendix contains the complete specification of the algebraic
CTL model checker.

2 Algebraic specification of CTL

The source and target languages of an algebraic compiler are defined as Ω-
languages 1. This formalism defines a language as a tuple L =< Sem,Syn,L :
Sem → Syn〉 where Sem is the language semantics specified by a universal
algebra of a given class of similarity, Syn is the language syntax specified by
the word algebra of that same class of similarity, and L is a partial mapping,
called the language learning function. There also exists a homomorphism E :
Syn → Sem, called the language evaluation function, such that E(L(α)) = α

whenever L(α) is defined. That is, L maps computations, or semantics, in
the semantics algebra to their expressions in the syntax algebra and E maps
expressions in the syntax algebra to their computations, or semantics, in the
semantics algebra. L and E are related by a Galois connection 5. In this
section, we describe the CTL formulas and the satisfiability sets of a model M
as Ω-languages.

Let us consider first the class of similarity C(Ω9) defined by the signature
Ω9 = 〈0, 0, 1, 2, 2, 1, 1, 2, 2〉 and an unspecified set of axioms. We define CTL
as the Ω9-language Lctl = 〈AM ,Aw

ctl,Lctl:AM → Aw
ctl〉. Here A

w
ctl is the word

(term) algebra of the class C(Ω9) generated by the operator scheme Ω9
ctl =

{true, false, ¬, ∧, ∨, AX, EX, AU , EU} and a finite set of variables from
AP . AM is a CTL semantic algebra of type Ω9 defined on the satisfiability
sets of the CTL formulas and determined by some model M . In other words,
since the meaning of a CTL formula is dependent upon the model M , the
CTL semantic algebra is also dependent upon the modelM . Lctl is a mapping
that associates satisfiability sets in AM with the CTL expressions in Aw

ctl that
satisfy them, and Ectl is a homomorphism that evaluates CTL expressions in
Aw

ctl to their satisfiability sets in AM .

The word algebra Aw
ctl is unique, up to homomorphism, in the class C(Ω

9)

4



and is independent of any model. The carrier set F of this algebra is the col-
lection of expressions, also called terms or words, built by the juxtaposition of
operator symbols in Ω9

ctl and variables in AP by the usual rules shown in Fig-

Operator D R Description
true : ∅ → F true ∈ F

false : ∅ → F false ∈ F

not : F → F if f ∈ F then ¬f ∈ F

and : F × F → F if f1, f2 ∈ F then f1 ∧ f2 ∈ F

or : F × F → F if f1, f2 ∈ F then f1 ∨ f2 ∈ F

AX : F → F if f ∈ F then AX f ∈ F

EX : F → F if f ∈ F then EX f ∈ F

AU : F × F → F if f1, f2 ∈ F then A[f1 U f2] ∈ F

EU : F × F → F if f1, f2 ∈ F then E[f1 U f2] ∈ F

Figure 2: The operator scheme of Aw
ctl

ure 2, where “D” stands for domain, and “R” stands for range. The constants
true and false form the set of nullary operators, Ωctl0 = {true, false}, and
thus are the free generators of the ground terms of Aw

ctl. In other words, the
carrier set F of the word algebra Aw

ctl is constructed in the usual way by the
following rules:

(i) if f ∈ AP ∪ Ω9
ctl0

then f ∈ F

(ii) if f1, . . . , fn ∈ F and ω ∈ Ω9
ctln
, then the “string” ω(f1, . . . , fn) ∈ F

where Ω9
ctln

is the set of operators in Ω9
ctl of arity n

6,7. Note, however, that
the CTL formulas are usually written using an infix notation instead of the
prefix notation given above.

The CTL semantic algebra AM has the same signature Ω9, but uses the
operator scheme Ω9

sem = {S, ∅, C ∩, ∪, Nextall, Nextsome, lfpall, lfpsome}.
For a model M the carrier set of AM is SM = 2S , the set of subsets of the
states S in the model M . These are the satisfiability sets of the formulas in
Aw

ctl. Since A
w
ctl and AM are similar, each operator in Ω9

ctl corresponds to
an operator of the same arity in Ω9

sem. However, while the operators in Ω
9
ctl

are used to construct well-formed CTL expressions, the operators in Ω9
sem are

used to construct satisfiability sets of well-formed CTL expressions. There-
fore we use different symbols to denote these operators. That is, the opera-
tors true, false,¬,∧,∨, AX,EX,AU, and EU in Ω9

ctl correspond, respectively,
to the operators S, ∅, C,∩,∪, Nextall, Nextsome, lfpall, and lfpsome in Ω

9
sem

whose actions in SM are defined as follows:

5



• S is the constant set of all states in M and ∅ is the constant empty set.

• C is the unary operator that produces the complement in S of its argu-
ment.

• ∩ and ∪ are the binary set union and intersection operators.

• For α ∈ SM the unary operators Nextall(α) and Nextsome(α) are de-
fined by the equalities Nextall(α) = {s ∈ S|successors(s) ⊆ α} and,
Nextsome(α) = {s ∈ S|successors(s) ∩ α 6= ∅}, respectively, where
successors(s) denotes the successors of the state s in the model M .

• lfpall and lfpsome are inspired by the Y operator for fixed point construc-
tion 8. For α, β ∈ 2S , lfpall(α, β) computes the least fixed point of the
equation Z = β∪(α∩{s ∈ S|successors(s) ⊆ (α∩Z)}) and lfpsome(α, β)
computes the least fixed point of the equation Z = β ∪ (α ∩ {s ∈
S|(successors(s) ∩ α ∩ Z) 6= ∅}) 2.

Although the algebra AM exists, it is not used directly in the model checking
process. It is only used to explain CTL as an Ω-language.

The CTL model checker defined as an algebraic compiler maps expres-
sions in the CTL syntax algebra Aw

ctl into set expressions of a set expression
language determined by the model M while preserving the satisfiability se-
mantics of the CTL expressions. Thus, we need to organize the model as an
Ω-language whose syntax is the set of set expressions and whose semantics
is 2S where S is the set of states of the model. For that we consider the
class of algebras C(Ω4) defined by the signature Ω4 = 〈0, 2, 2, 2〉 and an un-
specified set of axioms. Further, we define the model M as the Ω4-language
LM = 〈Asets,A

w
sets,Lsets:Asets → Aw

sets〉. Here A
w
sets is the word (term) alge-

bra of the class C(Ω4) generated by the operator scheme Ω4
sets = {∅,∪,∩, \}

and a finite set of variables. The ground terms of Aw
sets are the set expressions

generated without any variables, i.e., set expressions which evaluate to the
empty set. It is only with variables specified by some model that meaningful
set expressions can be written. Therefore the set of variables for this word
algebra includes the set of atomic propositions AP , the states in S, and the
variable S. In a set expression containing these variables, a variable p in AP
represents the set of states which satisfy p, a variable s in S represents the
singleton set {s}, and the variable S represents the full set of states of a model
M . Given this interpretation, the evaluation function Esets can evaluate any
expression in Aw

sets to produce the set of states in Asets which the expression
describes. This underscores the fact that the meaning of a CTL formula can
only be defined for a specified model. The set expressions, i.e. the elements of

6



Aw
sets, are created by the same rules forming the expressions in A

w
ctl with Ω

4
sets

replacing Ω9
ctl.

Asets is a set algebra of the class of similarity Ω
4 such that there is the ho-

momorphism Esets:A
w
sets → Asets and Esets(Lsets(α)) = α whenever Lsets(α)

is defined. The operator scheme for Asets is given in Figure 3.

Operator D R Description
∅ : ∅ → SM ∅ ∈ SM

∩ : SM × SM → SM if S1, S2 ∈ SM then S1 ∩ S2 ∈ SM

∪ : SM × SM → SM if S1, S2 ∈ SM then S1 ∪ S2 ∈ SM

\ : SM × SM → SM if S1, S2 ∈ SM then S1 \ S2 ∈ SM

Figure 3: The operator scheme of Asets and Aw
sets

Now we can define the CTL model checker as an algebraic compilerMCM :
Lctl → LM , by an embedding morphism HMC from Aw

ctl to A
w
sets, which maps

from the word algebra of CTL formulas Aw
ctl to the word algebra of sets A

w
sets.

This morphism will map a CTL formula f to the set expression that evaluates
to the set of states in the model M which satisfy the formula f . In other
words, the CTL model checker can be defined as a tuple MCM = 〈I, HMC〉,
where I : 2S → 2S is the identity map on the carrier sets of the algebras
AM and Asets, and HMC : A

w
ctl → Aw

sets is an embedding of A
w
ctl into A

w
sets

such that the diagram in Figure 4 is commutative. The commutativity of this

Ω9

HHHHHHj

©©©©©©¼
?

AM
-Lctl

?

I

Aw
ctl

-Ectl

?

HMC

AM

?

I

Asets
-Lsets Aw

sets
-Esets Asets

Ω4
©©

©©
©©*

HH
HH

HHY 6

Figure 4: Ω-languages Lctl, and LM , and the model checker MCM = Esets ◦ HMC

7



diagram ensures that the mapping HMC preserves the meaning of formulas in
Aw

ctl when mapping them to set expressions in A
w
sets. Since the model checker

should evaluate CTL formulas to produce sets, not set expressions, the model
checker, MCM is implemented as HMC ◦ Esets, the composition of HMC and
the set language evaluation function Esets. Thus, for a CTL formula f in A

w
ctl,

MC(f) = (HMC ◦ Esets)(f) = Esets(HMC(f)) = {s ∈ S | M, s |= f}.
Since Aw

ctl and A
w
sets are not similar, the mapping HMC :A

w
ctl → Aw

sets is
not a homomorphism, rather it is an embedding morphism. This embedding
is implemented by creating a subalgebra Aw

sctl of A
w
sets similar to the algebra

Aw
ctl and then constructing the monomorphism HMC : Aw

ctl → Aw
sctl. The

subalgebra Aw
sctl has the same carrier set as the algebra A

w
sets. Its operations

are however those of similarity class Ω9 and are defined as derived operations
9,7,1 in terms of the existing operations in Ω4

sets. Hence, on the one hand
this subalgebra will be similar to Aw

ctl and thus HMC : A
w
ctl → Aw

sctl can be
implemented as a homomorphism, and on the other hand Aw

sctl is a subalgebra
of Aw

sets and thus the images of elements in A
w
ctl by HMC are computable set-

expressions whose values are sets of states of the modelM . The commutativity
of diagram in Figure 4 ensures that the values of these set-expressions are
precisely the satisfiability sets of the CTL expressions taken as arguments by
HMC .

In order to define the derived operations that implement the operations
in Ω9

ctl in the algebra A
w
sets we need some meta-variables, that run over the

carrier set of Aw
set. That is, the values taken by these meta variables are

set-expressions. Further, we consider for each operation scheme ω ∈ Ω9
ctl a

parameterized macro-operations denoted by d(ω), whose name is ω, whose
parameters are meta variables denoted by @i, 1 ≤ i ≤ arity(ω), and whose
bodies are defined as well-formed words in the word algebra over operations
in Ω4

sets and meta variables @i. The variable @i used as a parameter in the
macro-operation d(ω) take as values set-expressions in Aw

sets that are images
of argument i of the CTL expressions constructed by the operator ω. In other
words, if arity(ω) = n and ω is the function ω:A1×A2× . . .×An → A0, which
defines CTL expressions of syntax category A0 in terms of CTL expressions of
syntax categories Ai, 1 ≤ i ≤ n then @i is the meta variable that take as values
set-expressions that are images of the CTL expressions of syntax category Ai,
1 ≤ i ≤ n.

Now the morphism HMC can be constructed by the following rules:

1. Define the macro-operations for the generators of the Aw
ctl. This is done

by setting d(true) = S, d(false) = ∅, and d(p) = p for each p ∈ AP .

2. Embed the generators of the algebra Aw
ctl in the algebra A

w
sets by the

8



function: HMC(true) = d(true), HMC(false) = d(false), and ∀p ∈
AP.HMC(p) = d(p)

3. Extend the function defined at (2) above to the entire algebra Aw
sets by

the equality: for each w ∈ Aw
ctl such that w = ω(f1, f2, . . . , fn) define

HMC(w) = d(ω)(HMC(f1), HMC(f2), . . . , HMC(fn))

Since HMC is the unique extension of the function (2) to a homomorphism
HMC is well defined.

To improve the efficiency of the model checker it is possible to interpret the
derived operations, d(ω), ω ∈ Ω9

ctl as operations over sets in Asets instead of as
operations over set expressions in Aw

sets. Thus, instead of mapping a formula
in Aw

ctl to a set expression in A
w
sets and then evaluating the set expression

to a set in Asets, we can map the formula directly into the set algebra Asets.
This is accomplished by modifying the macro processor portion of the algebraic
compiler and is discussed in the following section.

3 Algebraic implementation of a model checker

The behavior of a model checking algorithm consists of identifying the set of
states of the model M that satisfy each sub-formula of a given CTL formula f
and constructing from these sets, the set of states that satisfy the formula f .
This is precisely the behavior of the algorithm for homomorphism computation
performed by an algebraic compiler; it evaluates an expression by repeatedly
identifying its generating sub-expressions and replacing them with their values.
In the case of a model checker, the sub-expressions are CTL sub-formulas
and their values are the sets of states in the model which satisfy the sub-
formulas. Hence, to understand the algebraic implementation of the model
checking algorithm, we describe first the structure of an algebraic compiler
and then show its relationship with a model checker.

3.1 Structure of an algebraic compiler

The syntax of the source language of an algebraic compiler is specified by a
finite set, R, of BNF specification rules. Each rule r ∈ R corresponds to an
operation in the source language syntax algebra and is an equation of the form
A0 ::= t0A1t2 . . . tn−1Antn where, for each i, 0 ≤ i ≤ n, ti is a string (possibly
empty) of terminal symbols and each Ai is a variable called a nonterminal

symbol. We use the notation lhs(r) to denote the left-hand side of the rule r,
that is, lhs(r) = A0, and rhs(r) to denote the right-hand side of the rule r,
that is, rhs(r) = t0A1t1 . . . tn−1Antn. As an example, in an algebraic model

9



checker, the Aw
ctl operation ∧:F × F → F could be represented as the BNF

rule F ::= F and F .

An algebraic compiler is specified by associating each source language spec-
ification rule r ∈ R, r: A0 ::= t0A1t2 . . . tn−1Antn, with a target macro opera-
tion, macro(r). This forms a compiler specification CS = {〈r,macro(r)〉 | r ∈
R}. Typically, the macro operation macro(r) is a parameterized target lan-
guage representation of the computation expressed by the source language
construct specified by r. In a Pascal to C language translator for example,
the macro operation associated with a rule specifying a Pascal for loop would
describe, in C, the equivalent C for loop. That is, macro(r) is defined by
the compiler implementor by expressing in the target language the meaning
of the source language computation specified by r in terms of the target lan-
guage images of the components of the source expression. The components
of the source language construct specified by r : A0 ::= t0A1t1 . . . tn−1Antn
are source language constructs of syntax categories A1,A2,. . ., An. Hence, the
formal parameters of macro(r) are the nonterminals A1, A2, . . . , An and the
actual parameters are target language images of the source language constructs
of syntax categories A1, A2,. . ., An. The body of macro(r) expresses the com-
putation denoted by the constructs specified by r as a valid target construct
in the target language called the target image; this target image is composed
from the target images of the components of the construct specified by r. As
in Section 2 we use the symbol @, with indices, to denote the target images of
the components of constructs specified by r. That is, the actual parameters of
the macro operation macro(r) are the target images, denoted @1,@2, . . . ,@n,
of the source language constructs of syntax categories A1, A2, . . . , An. For ex-
ample, in the algebraic specification of a model checker, the macro operation
associated with the rule F ::= F and F must express, in the target language
of sets, the set of states on which a formula specified by this rule holds. This
set of states is the intersection of the two sets of states which satisfy the two
sub-formulas of any formula specified by this rule. This macro operation im-
plements the ∧ operator in the source language by the ∩ operator in the target
language. This operation may be defined by the expression @1 ∩ @2 which
would be associated with the rule F ::= F and F in the compiler specification.

An algebraic compiler is implemented by three components R,G, andM.
R is a pattern-matching parser recognizing valid constructs in the source lan-
guage. M is a target language macro processor which expands target language
macro operations associated with the specification rules used by R to produce
valid target language constructs called images. G provides an interface between
R andM. Let r : A0 = t0A1t1 . . . tn−1Antn be a specification rule, in R, used
by R to recognize valid constructs specified by r in the input text. When R

10



recognizes a portion of the input text specified by r, it calls G, giving it as
parameters the rule r and the portion of input text matched by the right hand
side of rule r. G identifies the macro-operation macro(r) associated with r and
uses the text matched by rhs(r) to identify the previously computed target
images @1, @2,. . ., @n of the components of the construct recognized by R.
These target images belong respectively to syntax categories A1, A2, . . ., An.
G packages these target images into the list macro(r), (@1,@2, . . . ,@n) which
it passes to the the macro processor M. The macro processor M expands
the macro-operation macro(r) taking @1, @2, . . ., @n as parameters thus con-
structing the target image @0 of syntax category A0 of the portion of input
text matched by rhs(r). This target image is passed back to G which associates
it with the left hand side of the rule r, lhs(r), i.e., with A0, thus constructing
the tuple (lhs(r),@0) which replaces the portion of the text matched by rhs(r)
in the input. This process is illustrated in Figure 5. In the case where an alge-

P ′ = α x lhs(r):@0 y β

P = α x t0A1: @1 . . . An: @ntn y β

R - R

?

?
-rhs(r)

¾
lhs(r):@0

G
-macro(r)(@1, . . . ,@n)

¾
@0

M

Figure 5: The integration of the components of an algebraic compiler

braic compiler 〈R,G,M〉 implements a model checker, the source language is
the language of CTL formulas and the target language is a language of sets of a
model. Thus, the source language constructs recognized by R are sub-formulas
of CTL formulas, the target images produced byM are the satisfiability sets
of the sub-formulas recognized by R, and G is the interface between them.
The components R, G, andM are generated by the TICS compiler generation
tools from specifications of the source and target languages.

The compilation process performed by the algebraic compiler is a sequence
of transformations of the input text during which source language constructs
specified by the rules r ∈ R are discovered in the input text, their target im-
ages @lhs(r) are constructed by expanding their associated macros, macro(r),
and the portions of the input text representing such constructs are replaced
by records of the form lhs(r):@lhs(r). Suppose that after a number of trans-
formations the input text has the form

P = α x t0 A1: @1 t1 . . . An: @n tn y β

11



where α, β, x, and y are text strings, and the tuple Ai: @i, 1 ≤ i ≤ n, shows
that a source language construct of syntax category Ai has been discovered by
R as a valid component of the input and its target image constructed byM is
@i. The next transformation of P by the algebraic compiler is performed by
the following three steps.

(1) For each 〈r,macro(r)〉 ∈ CS, R interprets rhs(r) = t0A1t1 . . . Antn
as a pattern to search for in P . R ignores the target images embedded in P .
When an occurrence of the rhs(r) is discovered in P by R the context 10 (x, y)
is checked against the pre-computed context and non-context sets associated
with r. If (x, y) is in the context set of rule r then the rhs(r) can be replaced
by the lhs(r) preserving the syntactic validity of P , i.e., P is transformed into
P ′ = α x lhs(r) y β. If (x, y) is in the non-context set of rule r then the rhs(r)
can not be replaced by the lhs(r) because r was not used to generate the text
specified by rhs(r).

(2) For each 〈r,macro(r)〉 ∈ CS, G interprets rhs(r) = t0A1t1 . . . Antn as
the name of the macro operation macro(r). Therefore, when R determines
that a portion of the input can be replaced by the lhs(r), G identifies the
macro-operation macro(r), extracts the actual parameters @1, . . . ,@n from
the portion of the input t0 A1: @1 t1 . . . An: @n tn matched by R and calls
the macro processorM to expand the macro operation macro(r) with param-
eters (@1, . . . ,@n). @0 denotes the construct thus generated by M. Then G
associates the parameter @0 with the lhs(r) creating the record lhs(r):@0.

(3) When G calls the macro processor M and passes it the parameters
macro(r) and @1, . . . ,@n, M builds a target image @0 from the component
target images @1, . . . ,@n according to the macro macro(r). The macro spec-
ifies how the macro processor will build the target image @0 from the com-
ponents @1, . . . ,@n. The relationship between components R, G, and M of
the algebraic compiler while performing a transformation of the input text is
shown in Figure 5.11

3.2 The macro processor generating satisfiability sets

Although the components R and G of an algebraic compiler depend only on
the specification rules R, M depends on the macro-operations and the tar-
get language in which these macro-operations are expanded. Hence, algebraic
compilers with different target languages use different macro processors to gen-
erate target images. A macro processor used for generating assembly language
programs is not appropriate for generating the sets of states in a model which
satisfy CTL formulas since the macro processor used by the CTL model checker
generates the sets of states which satisfy CTL formulas. It builds the target

12



image set @0 for a CTL formula, f , from target image sets @1, . . . ,@n which
satisfy the sub-formulas of f . The macros processed by this macro processor
specify how to construct the set @0 from the parameter sets @1, . . . ,@n. Each
macro processor works in a different target algebra and thus defines an ap-
propriate language in which the macros it processes are written. While both
assembly macro processors and CTL macro processors construct target images
from component target images as instructed by macro operations, the macro
operations are specific to the target language. Thus, when specifying an al-
gebraic compiler, we must be sure that an appropriate macro processor exists
for the target language. To adapt the general algebraic compiler methodology
to model checking, a new macro processor, namedMAsets

, must be created to
compute the sets of states in the model.

The macro operations discussed in Section 2 provide a mechanism for
specifying parameterized set expressions which define operations in the word
algebra Aw

ctl. These macro operations take as parameters valid set expressions
and generate valid set expressions. For example, if @i ∪@j is a parameterized
set expression and @i and @j are valid set expressions then, @i ∪@j evaluates
to a valid set expression whenever @i and @j are substituted into @i ∪ @j .
These same parameterized set expressions can also define operations in the set
algebra Asets which take sets as parameters and evaluate to sets. Considering
the nature of our problem, we design a macro processor which implements
the macro operations in the set domain of Asets instead of the set expressions
domain of Aw

sets.

The language in which the macro operations processed byMAsets
are writ-

ten is a simple imperative language that allows us to construct satisfiability
sets using set operations (∩,∪, \) over the given generator sets of Asets and set
variables over the carrier set of Asets, denoted by @i, i = 0, 1, . . . , n. Specif-
ically, since our macros expand into the satisfiability sets of CTL formulas
specified by BNF rules, r, of the form A0 ::= t0A1t1 . . . tn−1Antn, the variables
@i, 1 ≤ i ≤ n, stand for the satisfiability sets of the CTL components of syntax
categories Ai, 1 ≤ i ≤ n, and @0 stands for the satisfiability set of the CTL for-
mula matched by rule r. This language has been extended with the conditional
set construction operator denoted by {s ∈ S| < condition on s >}. There are
also macro assignment statements and while loops which are used to control
the application of the target language algebra operations. Boolean expressions
over sets using the subset and equivalence relations are also available. These
provide a convenient mechanism to write macros to express complex derived
operations in the target language algebra of sets. The implementation of this
macro processor,M

Asets
is discussed below in 3.4.

13



3.3 Generating a model checker program

Here we develop the implementation of MCM using the methodology of the
algebraic compiler. The essential element here is the embedding of the source
algebra Aw

ctl into the target algebra Asets by derived (macro) operations. In
this section we show the BNF rules, R, which specify Aw

ctl and the macro
operations that map the CTL formulas into Asets thus embedding A

w
ctl into

Asets. The model checking program is automatically generated from these
specifications.

The set of BNF rules that directly specify the source syntax algebra may
be ambiguous, which is the case with Aw

ctl. Therefore, we split the carrier set
F of Aw

ctl on the layers of generation Factor, Term, and Expression and write
BNF rules that provide a non-ambiguous specification of Aw

ctl. This yields the
three syntax categories Ff , Ft, and Fe. The complete specification, with the
associated macro operations, can be seen in the Appendix. To increase the
readability of this specification we discuss a few of the rules and their macro
operations and show an example compilation below. In

r: Ft ::= Ft and Ff ;
macro(r): @0 := @1 ∩@2 ;

as described above, the macro operation implements the source algebra ∧ op-
eration as the target algebra ∩ operation. In the following,

r: Ff ::= p ;
macro(r): @0 := P (p) ;

the generator P (p) gives the set of states on which the proposition p holds.
The macro operation in

r: Ff ::= ax Ff ;
macro(r): @0 := {s ∈ S|successors(s) ⊆ @1} ;

finds all states s such that all successors of s are in the set @1. In

r: Ff ::= a [ Fe u Fe ] ;
macro(r): let Z, Z ′ be sets;

Z := ∅ ; Z ′ := @2 ;
while ( Z 6= Z ′ ) do

Z := Z ′ ;
Z ′ := Z ′ ∪ {s ∈ S|s ∈ @1 ∧ successors(s) ⊆ Z} ;

end while
@0 := Z ;

the macro operation uses set variables Z and Z ′ to implement a least fixed point
solution to the equation Z = (@2∪ (@1 ∩ {s ∈ S|successors(s) ⊆ (@1 ∩Z)})).

By applying the TICS compiler generation tools to the complete specifi-
cation in the Appendix we obtain a program that implements a CTL model

14



checking algorithm. As described in Section 3.2, when this program is run on a
CTL formula and a modelM it gives as the result the set of states ofM which
satisfy the given formula. We should also note that although we have stated
that the model M dictates the creation of the algebras Aw

sets and Asets, the
same model checker program can be used to find the satisfiability set of any
CTL formula on any given model M . When M changes, the model checker
algorithm works correctly by simply updating the generator sets of the new
Aw

ctl and Asets algebras.
As an example, consider the CTL formula not ( C1 and C2) checked against

the model in Figure 1. The rhs(r) of the rule Ff ::= p will match atomic
propositions C1 and C2 since “p” matches names of atomic propositions. The
macro processor is called, once for each proposition matched, to execute the
macro @0 := P (p), generating, respectively, the sets {2, 4} and {6, 8} since 2
|= C1, 4 |= C1, 6 |= C2, and 8 |= C2. The lhs symbol, Ff , and the target set
images replace the respective propositions in the CTL formula to yield

not ( Ff : {2, 4} and Ff : {6, 8} )
Next, the rule Ft ::= Ff will match the first sub-formula. (The second sub-
formula textually matches rhs(r), but the context set of the rule does not
include the tuple 〈 and, ) 〉, so this occurrence is not matched. This parsing
method is explained fully in 1,12,13). The macro associated with the rule Ft ::=
Ff is @0 := @1 and consequently only copies the target image from the first
parameter yielding

not ( Ft: {2, 4} and Ff : {6, 8} )
Now the rhs of rule Ft ::= Ft and Ff will match the pattern “Ft and Ff .”
The associated macro, @0 := @1 ∩ @2, will take the set intersection of the
parameter sets, which in this case results in the empty set. The empty set is
associated with Ft and placed in the formula to yield

not ( Ft: ∅ )
After application of the copy rules Fe ::= Ft and Ff ::= ( Fe ), we are left with

not Ff : ∅
The rhs of the rule Ff ::= not Ff now matches the text and the associated
macro @0 := S \@1 is applied with @1 = ∅ to yield

Ff : {0, 1, 2, 3, 4, 5, 6, 7, 8}
After the application of the copy rules Ft ::= Ff and Fe ::= Ft we are left with
the final form

Fe: {0, 1, 2, 3, 4, 5, 6, 7, 8}.
Since no more rules in R have a rhs(r) which match any portion of the CTL
formula text, the process is complete. Thus, this process shows that the for-
mula not(C1andC2) is satisfied on all states in the model and thus mutual
exclusion is assured.

15



3.4 Implementing the macro processor MAsets

The implementation of the macro processor MAsets
is necessary to generate

model checking algorithms from their algebraic specifications. As stated before,
the macro operations are written in a macro language for sets which specifies
the target algebra operations to be performed to build the satisfiability sets for
the CTL formulas constructed by the BNF rules. The macro processorMAsets

interprets the macro operations as collections of operations on sets. At the time
when the model checker program is generated from its specifications, the macro
operations, which are essentially code fragments written in the macro language,
are translated into C language code fragments which are compiled and linked to
the rest of the model checker program. These C language statements perform
the operations specified by the macro operations. This translation is done by a
macro pre-processor which translates each macro operation into a C language
function which is executed when a CTL formula is being verified to construct
the satisfiability set specified by the macro operation. For example, the macro
operation @0 := @1∩@2 associated with the rule Fe ::= Fe and Ft is translated
by the macro pre-processor into the C language function shown in Figure 6.
(Since this rule appears as the third rule in the specification the function

void macro_3 ( image_struct_ptr LHS, image_struct_ptr RHS[2] )

{ set_copy ( LHS->image,

set_intersection ( RHS[1]->image, RHS[2]->image ) ) ; }

Figure 6: C language function implementing a macro operation.

name is macro 3.) The functions set copy and set intersection belong to
a library of set functions which are also linked to the model checker program.

The macro pre-processor which translates the macros to C language func-
tions is itself implemented as an algebraic compiler generated by the same
TICS tools used to generate the model checker. This compiler has the macro
language as its source language and C as its target language. Like any alge-
braic compiler, it is automatically built from the algebraic specification of its
source and target languages. Thus, building the macro pre-processor is not a
difficult task.

4 Conclusions

The complexity of the original model checker algorithm presented by Clarke,
Emerson, and Sistla 2 is O(length(f)× (card(S) + card(E))). Having in view
that the recognizer R is linear in the length of the input text f , and that macro

16



expansion could be polynomial in the size of the model, the worst case behav-
ior of the model checker algorithm presented in this paper is O(length(f) ×
(card(S)2 + card(E)). However, this is not inherent in the use of the alge-
braic methodology and one can write target language macros that are linear,
therefore obtaining the same complexity. But the distinct advantage of using a
homomorphism computation is that the generated model checker can be easily
implemented by a parallel algorithm. The process performed by R, G, andM
can be replicated to work on different parts of the input text at the same time,
thus executing in parallel.

Another significant advantage of our methodology is that all components
R, G, and M of the model checker are automatically generated from their
specifications. Thus, human programming errors are avoided. If the specifi-
cations are correct, then the generated program is correct. This ensures the
correctness of the model checker. This does require the implementor to under-
stand the model checker in the algebraic framework presented above and be
able to specify it as a homomorphism between algebras. However, the univer-
sality of the homomorphism computation makes various algebraic frameworks
implementable by this same approach. There is very little, if any, traditional
programming required by this implementation framework; the program is auto-
matically generated. The re-usability of previous work allowing the extension
of the algorithm is another advantage of using an algebraic framework. By ex-
tending the algebraic specification the implementor can change the generated
program such that its behavior fits new requirements 14.

Finally, we want to observe that the application of the algebraic model
checker expands beyond the usual field of interest. We are involved in a project
to use CTL model checking to identify and exploit implicit parallelism in se-
quential programs 15,16. The program text is analyzed by a usual recognizer
and a macro-processor generates a model describing its flow of data and con-
trol. A CTL model checker uses this model and CTL formulas describing
opportunities for parallelism or parallelism properties to identify states where
implicit parallelism exists or to verify that an appropriate amount of paral-
lelism in the original program has been exploited. Other CTL formulas can
verify that certain optimality conditions have been satisfied.

Information about the current implementation of the CTL model checker,
and various algebraic extensions are available on the World Wide Web at URL
http://www.cs.uiowa.edu/~tics/ModelChecker.

Acknowledgments

We thank the NASA Jet Propulsion Laboratory for supporting this research.

17



Appendix - Algebraic Specification

Below is the complete algebraic specification used to generate an implementa-
tion of the model checker algorithm.

r1: Fe ::= Fe or Ft ; macro(r1): @0 := @1 ∪@2 ;
r2: Fe ::= Ft; macro(r2): @0 := @1 ;
r3: Ft ::= Ft and Ff ; macro(r3): @0 := @1 ∩@2 ;
r4: Ft ::= Ff ; macro(r4): @0 := @1 ;
r5: Ff ::= not Fe ; macro(r5): @0 := S \@1 ;
r6: Ff ::= ( Fe ) ; macro(r6): @0 := @1 ;
r7: Ff ::= p ; macro(r7): @0 := P (p) ;
r8: Ff ::= true ; macro(r8): @0 := S ;
r9: Ff ::= false ; macro(r9): @0 := ∅ ;

r10: Ff ::= ax Ff ;
macro(r10): @0 := {s ∈ S|successors(s) ⊆ @1} ;

r11: Ff ::= ex Ff ;
macro(r11): @0 = {s ∈ S|successors(s) ∩@1 6⊆ ∅} ;

r12: Ff ::= a [ Fe u Fe ] ;
macro(r12): let Z, Z

′ be sets;
Z := ∅ ; Z ′ := @2;
while ( Z 6= Z ′ ) do

Z := Z ′ ;
Z ′ := Z ′ ∪ {s ∈ S|s ∈ @1 ∧ successors(s) ⊆ Z} ;

end while
@0 := Z ;

r13: Ff ::= e [ Fe u Fe ] ;
macro(r13): let Z, Z

′ be sets;
Z := ∅ ; Z ′ := @2 ;
while ( Z 6= Z ′ ) do

Z := Z ′ ;
Z ′ := Z ′ ∪ {s ∈ S|s ∈ @1 ∧ successors(s) ∩ Z 6= ∅} ;

end while
@0 := Z ;

18



References

1. T. Rus. Algebraic construction of compilers. Theoretical Computer

Science, 90:271–308, 1991.
2. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
TOPLAS, 8(2):244–263, 1986.

3. S. Kripke. Semantical analysis of modal logic i: Normal modal proposi-
tional calculi. Zeitschrift f. Math. Logik und Grundlagen d. Math., 9,
1963.

4. T. Rus, T. Halverson, E. Van Wyk, and R. Kooima. An algebraic lan-
guage processing environment. In Sixth International Conference on

Algebraic Methodology and Software Technology, AMAST ’97, Proceed-

ings, Syney, Australia, Dec. 13–17 1997.
5. S. Mac Lane. Categories for the Working Mathematician. Springer-
Verlag, New York Heidelberg Berlin, 1971.

6. S. Burris and H. P. Sankappanavar. A Course in Universal Algebra.
Graduate Texts in Mathematics, 78. Springer-Verlag, New York, 1980.

7. P.M. Cohn. Universal Algebra. Reidel, London, 1981.
8. M. Gordon. Programming Language Theory and its Implementation.
Prentice Hall, 1988.

9. R.M. Burstall and P.J. Landin. Programs and their proofs: an algebraic
approach. Machine Intelligence, 4:17–43, 1969.

10. T. Rus and T. Halverson. Algebraic tools for language processing. Com-
puter Languages, 20(4):213–238, 1994.

11. T. Rus and S. Pemmaraju. Using graph coloring in an algebraic compiler.
Acta Informatica, 34(3):191–209, 1997.

12. T. Rus. Algebraic construction of a compiler. Technical Report 90–01,
The University of Iowa, Dept. of Computer Science, 1990.

13. J.L. Knaack. An Algebraic Approach to Language Translation. PhD
thesis, The University of Iowa, Dept. of Computer Science, Dec. 1994.

14. T. Rus and E. Van Wyk. Integrating temporal logics and model check-
ing algorithms. In Fourth AMAST Workshop on Real-Time Systems,

Proceedings, LNCS, 1231. Springer-Verlag, May 21 1997.
15. T. Rus and E. Van Wyk. A formal approach to parallelizing compilers.

In SIAM Conference on Parallel Processing for Scientific Computation,

Proceedings, March 14 1997.
16. T. Rus and E. Van Wyk. Model checking tools for parallelizing compil-

ers. In Second International Workshop on Formal Methods for Parallel

Programming: Theory and Applications, Proceedings, April 1 1997.

19


