University of Minnesota
Software Engineering Center
/

You are here

Michael Whalen

Photo of Michael Whalen
Director of the Software Engineering Center
Director of Graduate Studies
Phone Number: 
612-624-5130
Office Location: 
Kenneth H Keller Hall room 6-254
Biography: 

Dr. Michael Whalen is the Program Director at the University of Minnesota Software Engineering Center. He has 15 years experience in software development and analysis, including 10 years experience in Model-Based Development & safety-critical systems. Dr. Whalen has developed simulation, translation, testing, and formal analysis tools for Model-Based Development languages including Simulink, Stateflow, Lustre, and RSML-e. He has led successful formal verification projects on large industrial avionics models, including displays (Rockwell-Collins ADGS-2100 Window Manager), redundancy management and control allocation (AFRL CerTA FCS program) and autoland (AFRL CerTA CPD program). Dr. Whalen was the lead developer of the Rockwell-Collins Gryphon tool suite, which can be used for compilation, test-case generation, and formal analysis of Simulink/Stateflow models. This tool suite has been used both for academic research and industrial verification projects.

Dr. Whalen is a frequent speaker and author on the use of formal methods, with 10 invited presentations, five journal publications, one book chapter, 19 conference papers, and 7 contractor and technical reports published. His PhD dissertation involved using higher-order abstract syntax as a basis for a provably-correct code generation tool from the RSML-e specification language into a subset of C. His interests include novel uses of model checking, test generation, theorem proving, and random search simulation tools to reduce the cost and manual effort required for systems and software validation for critical systems.

Recent Publications

Towards Realizability Checking of Contracts using Theories

Virtual integration techniques focus on building architectural models of systems that can be analyzed early in the design cycle to try to lower cost, reduce risk, and improve quality of complex embedded systems. Given appropriate architectural descriptions and compositional reasoning rules, these techniques can be used to prove important safety properties about the architecture prior to system construction.

Requirements Analysis of a Quad-Redundant Flight Control System

In this paper we detail our effort to formalize and prove requirements for the Quad-redundant Flight Control System (QFCS) within NASA’s Transport Class Model (TCM). We use a compositional approach with assume-guarantee contracts that correspond to the requirements for software components embedded in an AADL system architecture model. This approach is designed to exploit the verification effort and artifacts that are already part of typical software verification processes in the avionics domain.

From Requirements to Code: Model Based Development of A Medical Cyber Physical System?

The advanced use of technology in medical devices has improved the way health care is delivered to patients. Unfortunately, the increased complexity of modern medical devices poses challenges for development, assurance, and regulatory approval. In an eort to improve the safety of advanced medical devices, organizations such as FDA have supported exploration of techniques to aid in the development and regulatory approval of such systems. In an ongoing research project, our aim is to provide effective development techniques and exemplars of system

Pages