University of Minnesota
Software Engineering Center
/

You are here

John Backes

Student/Research Assistant

Recent Publications

Validity-Guided Synthesis of Reactive Systems from Assume-Guarantee Contracts

Automated synthesis of reactive systems from specifications has been a topic of research for decades. Recently, a variety of approaches have been proposed to extend synthesis of reactive systems from propositional specifications towards specifications over rich theories. We propose a novel, completely automated approach to program synthesis which reduces the problem to deciding the validity of a set of AE-formulas. In spirit of IC3 / PDR, our problem space is recursively refined by blocking out regions of unsafe states, aiming to discover a fixpoint that describes safe reactions.

Resolute: An Assurance Case Language for Architecture Models

Arguments about the safety, security, and correctness of a complex system are often made in the form of an assurance case. An assurance case is a structured argument, often represented with a graphical interface, that presents and supports claims about a system's behavior. The argument may combine different kinds of evidence to justify its top level claim. While assurance cases deliver some level of guarantee of a system's correctness, they lack the rigor that proofs from formal methods typically provide.

Towards Realizability Checking of Contracts using Theories

Virtual integration techniques focus on building architectural models of systems that can be analyzed early in the design cycle to try to lower cost, reduce risk, and improve quality of complex embedded systems. Given appropriate architectural descriptions and compositional reasoning rules, these techniques can be used to prove important safety properties about the architecture prior to system construction.

Pages