University of Minnesota
Software Engineering Center

You are here

Andrew Gacek

Recent Publications

Validity-Guided Synthesis of Reactive Systems from Assume-Guarantee Contracts

Automated synthesis of reactive systems from specifications has been a topic of research for decades. Recently, a variety of approaches have been proposed to extend synthesis of reactive systems from propositional specifications towards specifications over rich theories. We propose a novel, completely automated approach to program synthesis which reduces the problem to deciding the validity of a set of AE-formulas. In spirit of IC3 / PDR, our problem space is recursively refined by blocking out regions of unsafe states, aiming to discover a fixpoint that describes safe reactions.

Requirements and Architectures for Secure Vehicles

In the High-Assurance Cyber Military Systems project, researchers are investigating how to construct complex networked-vehicle software securely. Experiments demonstrated that careful attention to requirements and system architecture, along with formally verified approaches that remove known security weaknesses, can lead to vehicles that can withstand attacks from even sophisticated attackers with access to vehicle design data.

Towards Synthesis from Assume-Guarantee Contracts involving Infinite Theories: A Preliminary Report

In previous work, we have introduced a contract-based {\em realizability checking} algorithm for assume-guarantee contracts involving infinite theories, such as linear integer/real arithmetic and uninterpreted functions over infinite domains. This algorithm can determine whether or not it is possible to construct a realization (i.e. an implementation) of an assume-guarantee contract. The algorithm is similar to k-induction model checking, but involves the use of quantifiers to determine implementability.