University of Minnesota
Software Engineering Center
/

You are here

Mats Heimdahl

Photo of Mats Heimdahl
Computer Science and Engineering Department Head
Professor
Phone Number: 
612-625-2068
Office Location: 
Kenneth H Keller Hall room 6-201
Education: 

M.S. Computer Science and Engineering from the Royal Institute of Technology, Sweden, 1988.

Ph.D. Computer Science, University of California at Irvine, 1994.

Biography: 

Professor Mats Heimdahl specializes in software engineering and safety critical systems. He is the director of the University of Minnesota Software Engineering Center (UMSEC).

Heimdahl is the recipient of the National Science Foundation's CAREER award, a McKnight Land-Grant Professorship and the McKnight Presidential Fellow award at the University of Minnesota, and the University of Minnesota Award for Outstanding Contributions to Post-Baccalaureate, Graduate, and Professional Education.

Research: 

Software is increasingly involved in our lives; software controls physical systems ranging from microwave ovens and watches to nuclear power plants, aircraft, and cars. Computer-related failures can, in many of these applications, have catastrophic effects.

My research group, the Critical Systems Research Group (CriSys), is conducting research in software engineering and is investigating methods and tools to help us develop software with predictable behavior free from defects.

Research in this area spans all aspects of system development ranging from concept formation and requirements specification, through design and implementation, to testing and maintenance. In particular, we are currently investigating model-based software development for critical systems.

Specifically, we are focusing on how to use various static verification techniques to assure that software requirements models possess desirable properties, how to correctly generate production code from software requirements models, how to validate models, and how to effectively use the models in the testing process.

Interests: 

Software engineering and safety critical systems.

Recent Publications

Your "What" is My "How": Iteration and Hierarchy in System Design

Systems are naturally constructed in hierarchies, in which design choices made at higher levels of abstraction levy requirements on system components at the lower levels. Thus, whether an aspect of a system is a design choice or a requirement largely depends on your vantage point within the system components' hierarchy. Systems are also often constructed from the middle-out rather than top-down; compatibility with existing systems and architectures and availability of specific components influence high-level requirements.

Your what is my how: Why requirements and architectural design should be iterative

Systems are naturally constructed in hierarchies in which design choices made at higher levels of abstraction levy requirements on system components at lower levels of abstraction. Thus, whether an aspect of the system is a design choice or a requirement depends largely on one's location within the hierarchy of system components. In addition, it is often the case that systems are not constructed top-down, but rather middle-out; compatibility with existing systems and architectures, or availability of specific physical components may influence high-level requirements.

Automated Oracle Creation Support, or: How I Learned to Stop Worrying About Fault Propagation and Love Mutation Testing

In testing, the test oracle is the artifact that determines whether an application under test executes correctly. The choice of test oracle can significantly impact the effectiveness of the testing process. However, despite the prevalence of tools that support the selection of test inputs, little work exists for supporting oracle creation. In this work, we propose a method of supporting test oracle creation. This method automatically selects the oracle data - the set of variables monitored during testing - for expected value test oracles.

Pages