University of Minnesota
Software Engineering Center
/

You are here

Mats Heimdahl

Photo of Mats Heimdahl
Computer Science and Engineering Department Head
Professor
Phone Number: 
612-625-2068
Office Location: 
Kenneth H Keller Hall room 6-201
Education: 

M.S. Computer Science and Engineering from the Royal Institute of Technology, Sweden, 1988.

Ph.D. Computer Science, University of California at Irvine, 1994.

Biography: 

Professor Mats Heimdahl specializes in software engineering and safety critical systems. He is the director of the University of Minnesota Software Engineering Center (UMSEC).

Heimdahl is the recipient of the National Science Foundation's CAREER award, a McKnight Land-Grant Professorship and the McKnight Presidential Fellow award at the University of Minnesota, and the University of Minnesota Award for Outstanding Contributions to Post-Baccalaureate, Graduate, and Professional Education.

Research: 

Software is increasingly involved in our lives; software controls physical systems ranging from microwave ovens and watches to nuclear power plants, aircraft, and cars. Computer-related failures can, in many of these applications, have catastrophic effects.

My research group, the Critical Systems Research Group (CriSys), is conducting research in software engineering and is investigating methods and tools to help us develop software with predictable behavior free from defects.

Research in this area spans all aspects of system development ranging from concept formation and requirements specification, through design and implementation, to testing and maintenance. In particular, we are currently investigating model-based software development for critical systems.

Specifically, we are focusing on how to use various static verification techniques to assure that software requirements models possess desirable properties, how to correctly generate production code from software requirements models, how to validate models, and how to effectively use the models in the testing process.

Interests: 

Software engineering and safety critical systems.

Recent Publications

Structuring Formal Control Systems Specifications for Reuse: Surviving Hardware Changes

Formal capture and analysis of the required behavior of control systems have many advantages. For instance, it encourages rigorous requirements analysis, the required behavior is unambiguously defined, and we can assure that various safety properties are satisfied. Formal modeling is, however, a costly and time consuming process and if one could reuse the formal models over a family of products, significant cost savings would be realized. In an ongoing project we are investigating how to structure state-based models to achieve a high level of reusability within

On the Requirements of High-Integrity Code Generation

Although formal requirements specifications can provide a complete and consistent description of a safety-critical software system, designing and developing production quality code from high-level specifications can be a time-consuming and error-prone process. Automated translation, or code generation, of the specification to production code can alleviate many of the problems associated with design and implementation. However, current approaches have been unsuitable for safety-critical environments because they employ complex and/or ad-hoc methods for translation.

An Approach to Automatic Code Generation for Safety-Critical Systems

Although formal requirements specifications can provide rigorous and unambiguous description of a safety-critical software system, designing and developing production quality code from high-level specifications can be a time-consuming and error-prone process. Automated translation, or code generation, of the specification to production code can alleviate many of the problems associated with design and implementation.

Pages