University of Minnesota
Software Engineering Center
/

You are here

Minnesota Extensible Language Tools

Software development is a time-consuming and error-prone process that often results in unreliable and insecure software. At least part of the reason for these undesirable results is that large semantic gap between the programmer's high-level understanding of the problem and the relatively low-level programming language in which the problem solutions are encoded. Thus, programmers cannot "say what they mean" but must encode their ideas as programming idioms at a lower level of abstraction. This wastes time and is the source of many errors. A long range goal is to improve the software development process and the quality of the resulting software artifacts by reducing the semantic gap. Extensible languages provide a promising way to achieve this goal. An extensible language can easily be extended with the unique combination of domain-specific language features that raises the level of abstraction to that of the task at hand. The extended language provides the programmer with language constructs, optimizations, and static program analyses to significantly simplify the software development process.

Recent Publications

Generating Model Checkers from Algebraic Specifications

There is a great deal of research aimed toward the development of temporal logics and model checking algorithms which can be used to verify properties of systems. In this paper, we present a methodology and supporting tools which allow researchers and practitioners to automatically generate model checking algorithms for temporal logics from algebraic specifications.

Forwarding in Attribute Grammars for Modular Language Design

Forwarding is a technique for providing default attribute definitions in attribute grammars that is helpful in the modular implementation of programming languages. It complements existing techniques such as default copy rules. This paper introduces forwarding, and shows how it is but a small extension of standard higher-order attribute grammars. The usual tools for manipulating higher-order attribute grammars, including the circularity check (which tests for cyclic dependencies between attribute values), carry over without modification.

Proving Correctness of Compiler Optimizations by Temporal Logic

Many classical compiler optimizations can be elegantly expressed using rewrite rules of form: II' if φ, where I, I' are intermediate language instructions and φ is a property expressed in a temporal logic suitable for describing program data flow. Its reading: If the current program π contains an instruction of form I at some control point p, and if flow condition φ is satisfied at p, then replace I by I'.

Pages