Provenance

What’s Happening in your Production Data and ML Systems?

Code Freeze 2020: Observability

Date: January 16, 2020
Speaker: Donald Sawyer
About Donald Sawyer

• Sr. Solutions Architect, Data Engineering
• Focuses on Hadoop, Spark, and Data Engineering
• Continuous learning and education
• We’re hiring!
 • Data Engineers and Solution Architects
 • Machine Learning Architects & Engineers
 • Data Scientists

• MS Software Engineering (2016)
• Adjunct since 2017
 • Big Data Engineering and Architecture
Why This Topic?

Where Would You Want To Spend Your Time?

Size of Effort

Work Stream #1

Input To

Work Stream #2
Why This Topic?

Where Would You Want To Spend Your Time?

Size of Effort

Data Preparation / Data Engineering

Input To

Data Analytics
Abstract

Data is often your company’s most valuable asset, yet very few implementations of ETL and machine learning capabilities provide the ability to measure their effectiveness (quality), or their performance. Data and machine learning pipelines are built as multi-step software integrations, but when an issue arises, how will you determine what happened? Machine learning models degrade over time, but without the ability to observe them, your models could be ineffective long before someone notices.

In this talk, you will learn strategies for building visibility into data systems using data and ML provenance. Provenance is the concept of tracking the evolution of your data and models as data are moving through your system. As a side effect, you will also gain the measurements that typical software systems require to measure latency, throughput, load, and error rates...all without having to sift through dozens of logs from different systems in your technology stack.
Introductory Concepts

A quick intro to provenance and pipelines
Data Pipeline

Some data Processing → User Info Updates → User Info → Sales → Some Aggregate Processing → eCommerce Data Warehouse
Data Pipeline + ML Pipeline

Some data Processing

User Info Updates

User Info

Some Aggregate Processing

Sales

Some Aggregate Processing

eCommerce Data Warehouse

Trained Models

Machine Learning Magic
Defining Provenance

Describing the **origin** for data, but also its **changes over time**.

Common questions to answer with provenance:

- Why
- How
- Where
Decoupled Data System

Walkthrough of a decoupled data system example.
A Decoupled Pipeline, In Detail
A Decoupled Pipeline, In Detail

Event Generation

```json
{  event_id: abc-123,  tag_id: 12345,  lat: 64.123456,  lon: -21.123456,  altitude_m: 800,  event_ts_utc: 1578784110000}
```
A Decoupled Pipeline, In Detail

Event Handling (Event Stream)

- Location event
- Handle Raw Event ID: 1
- Add Local Time ID: 2
- Calculate Heading into ID: 3
- Enriched event
- Add Tag Details ID: 4
- Tag location

Event Stream:

```json
{ 
  event_id: abc-123,
  tag_id: 12345,
  lat: 64.128288,
  lon: -21.827775,
  altitude_m: 800.1,
  event_ts_utc: 1578764110000 
}
```
A Decoupled Pipeline, In Detail

Store Raw

```json
{  
  event_id: abc.123,
  tag_id: 12345,
  lat: 64.128288,
  lon: -21.827779,
  altitude_m: 800.1,
  event_ts_utc: 1578764110000
}
```
A Decoupled Pipeline, In Detail

```json
{
  event_id: abc-123,
  tag_id: 12345,
  lat: 64.128288,
  lon: -21.827775,
  altitude_m: 800.1,
  event_ts_utc: 1578784110000
}
```
A Decoupled Pipeline, In Detail

```json
{
  "event_id": "abc-123",
  "tag_id": 12345,
  "lat": 64.128288,
  "lon": -21.827775,
  "altitude_m": 800.1,
  "event_ts_utc": 1578764110000
}
```
A Decoupled Pipeline, In Detail

Hand-Off Message

{ event_id: abc.123, tag_id: 12345, lat: 64.123456, lon: -21.987654, altitude_m: 800.1, event_ts_utc: 1577876410000 }
A Decoupled Pipeline, In Detail

```json
{
  event_id: abc-123,
  tag_id: 123456,
  lat: 64.128288,
  lon: -21.827775,
  altitude_m: 800.1,
  event_ts_utc: 1578764110000
}
```
Provenance by Use Case

Exploring how provenance improves observability within a data pipeline.
Uses for Provenance

• Audit trails and debugging
• Data quality
• Repeatability in data processing
• Informational
Use: Audit Trail & Debugging

• Audit the **process** by which data were produced
• Optimization of data derivation process (metrics)
• Runtime traces of execution to identify exceptions
• Backtracking DAGs to identify bad sources
• Identify the **nodes** that perform processing in a distributed system
• Use provenance as inputs to automated test cases for defect fixes
Example: Audit Trail & Debugging

PROCESS
- IDs + Versions
- Start/end timestamps (EPOCH)
- Transformations
- Inputs
- Configurations

DATA VERSIONS
- Traces of data issues
- Data change history
- Defect data

LINEAGE
- Sources
- Frequency of read

```json
{  
  event_id: abc-123,  
  tag_id: 12345,  
  lat: 64.123456,  
  lon: -21.877774,  
  altitude_m: 800.1,  
  event_ts_utc: 1578764110000  
}
```
Use: Replication of Processing

Idea: Provide data for reproducibility of data results, or to re-run data through a portion of the pipeline.

Needs:
• Versioned data as it flows through the system**
• Operations performed (steps in DAG + versions)
• Parameters used for input or configuration

** If you don’t have data versions, you must have the raw sources
Use: Data and System Quality

Idea: Identify existence of errors and faults in a pipeline that produce invalid, inconsistent, or incomplete results.

Provenance needed to gain visibility to issues:
• Steps that handled the data
• Inputs to each step
• Outputs of each step
• Transformations applied
• Platform information
Example: Data and System Quality

DAG METADATA / EVENTS
- Inputs of each step
- Outputs of each step
- Transformations applied
- Errors/faults encountered

```json
{  
  event_id: abc-123,  
  tag_id: 12345,  
  lat: 64.128288,  
  lon: -21.827779,  
  altitude_m: 800.1,  
  event_ts_utc: 1578764110000  
}
```
Use: Descriptive Analysis

Idea: Use information about pipelines and sources for discoverability, analysis, or governance.

- Measure DAG performance against SLAs
- Identify pipelines that have similar sources
- Use quality provenance to determine commonly problematic sources
- Identify critical components in the data system
Architectural Considerations

• Not all data products require granular provenance
• Provenance can be exponentially larger than the data
• Use a flexible or generic schema
• Fast response times for logging provenance
• Storage considerations
Storage Considerations

Some Storage Options
1. Attach to record
2. Send as event message(s)
3. Implement provenance API
Storage Option: Attach to record
Storage Option: Send as Event Message(s)
Storage Option: Provenance API

```
{ event_id: 'abc-123',
  tag_id: 12345,
  lat: 64.128288,
  lon: -21.827774,
  altitude_m: 800.1,
  event_ts_utc: 1578764110000
}
```
Other Considerations

• Some tools already capture some provenance
• Some integration tools enable provenance tracking
 • Amundsen (Lyft)
 • Marquez (WeWork)
 • Databook (Uber)
 • DataHub (LinkedIn)
• Culture
 • Provenance isn’t automatic – build it in
 • Without culture change, provenance is sporadic
 • Must make it trust-worthy
Machine Learning Provenance

Speedy additions for ML Provenance in deployment
Data Provenance in Machine Learning

• Data provenance in engineering, **plus**
 • Model id, version, name
 • Model algorithm(s) used
 • Model inputs + results
 • Other useful metadata

• Why?
 • Measuring multiple deployed models
 • Reproducability
 • Traceability
 • Analyzing model results (bias, etc.)
ML Provenance: The Basics

API

Data Platform

ANN

SVM

{ model_id: "ann_1", model_version: "2", results: { ... } }

{ api_request_id: "...", model_id: "svm_1", model_version: "5", inputs: { ... }, results: { ... }, provenance: [{ ann_1: { start_ts: 1234567890123, end_ts: 1234567890473, elapsed_t_ms: 350 } }] }

Timestamps:
- UTC
- Epoch 13-16 digits
- Save timezone offset, if needed
ML Provenance: Store Metrics

API

Data Magic

Data Platform

SVM

svm_results

ANN

ann_results

Store Model metrics

Batch or stream

model_metrics

Perform offline analytics of models

```
{
  api_request_id: "...",
  model_id: "ann_1",
  model_version: "2",
  inputs: { ... },
  results: { ... },
  provenance: [ {
    ann_1: {
      start_ts: 1234567890123,
      end_ts: 1234567890223,
      elapsed_t_ms: 100,
      model_inputs: { ... }
    }
  }]
}
```

```
{
  api_request_id: "...",
  model_id: "ann_1",
  model_version: "2",
  inputs: { ... },
  results: { ... },
  provenance: [ {
    ann_1: {
      start_ts: 123456789123,
      end_ts: 123456789523,
      elapsed_t_ms: 300
    }
  }]
}
```
ML Provenance: Handling Issues in Models

API

Data Magic

Data Platform

SVM

svm_results

Compare model results

model_alerts

Handle model alert

Real-time stream

Create events if issues are found.

{
 api_request_id: "...",
 model_id: "ann_1",
 model_version: "2",
 inputs: { ... },
 results: { ... },
 provenance: [{
 ann_1: {
 start_ts: 1234567890123,
 end_ts: 1234567890223,
 elapsed_t_ms: 100,
 model_inputs: { ... }
 }
]
}
```json
{
  "api_request_id": "...",
  "model_id": "ann_1",
  "model_version": "2",
  "inputs": {...},
  "results": {...},
  "provenance": {
    "ann_1": {
      "start_ts": 1234567890123,
      "end_ts": 1234567890223,
      "elapsed_t_ms": 100,
      "model_inputs": { ... }
    }
  }
}
```
NOW, ARE THERE ANY QUESTIONS?